Gaussian Optimization of Vocabulary Recognition Clustering Model using Configuration Thread Control
نویسندگان
چکیده
منابع مشابه
the impact of using inspirational quotes on abstract vocabulary recall
the present study is an attempt to investigate the potential impact of inspirational quotes on improving english abstract vocabulary recall. to achieve this goal, a multiple choice language proficiency test of 60 items including vocabulary and grammar component was administered to a sample of 63 second-semester male and female students whose age ranged between 17 to 22 and they were studying en...
15 صفحه اولSpeaker Recognition System using Gaussian Mixture Model
In this paper,features for text-independent speaker recognition has been evaluated. Speaker identification from a set of templates and analyzing speaker recognition rate by extracting several key features like Mel Frequency Cepstral Coefficients [MFCC] from the speech signals of those persons by using the process of feature extraction using MATLAB2013 .These features are effectively captured us...
متن کاملOptimization on Vietnamese large vocabulary speech recognition
This paper summarizes our latest efforts toward a large vocabulary speech recognition system for Vietnamese. We describe the Vietnamese text and speech database which we collected as part of our GlobalPhone corpus. Based on these data we improve our initial Vietnamese recognition system [1] by applying various state-of-the art techniques such as semi-tied covariance and discriminative training....
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملFace Recognition Algorithm Based on Doubly Truncated Gaussian Mixture Model Using Hierarchical Clustering Algorithm
A robust and efficient face recognition system was developed and evaluated. The each individual face is characterized by 2D-DCT coefficients which follows a finite mixture of doubly truncated Gaussian distribution. In modelling the features vector of the face the number of components (in the mixture model) are determined by hierarchical clustering. The model parameters are estimated using EM al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Society of Computer and Information
سال: 2010
ISSN: 1598-849X
DOI: 10.9708/jksci.2010.15.2.127